4768 Statistics 3

1 (i)	H ₀ : The number of eggs hatched can be modelled by $B(3, \frac{1}{2})$					
	H_1 : The number of eggs hatched cannot be					
	modelled by $B(3, \frac{1}{2})$					
	With $p = \frac{1}{2}$				I	
	Probability	0.125	0.375	0.375	0.125	
	Exp'd frequency	10	30	30	10	
	Obs'd frequency	7	23	29	21	
				M1	Probs \times 80 for expected frequencies	
				A1	All correct.	
	$X^2 = 0.9 + 1.6333 +$	- 0.0333 + 12	.1	M1	Calculation of X^2 .	
	= 14.666(7)			A1	c.a.o.	
				M1	Allow correct df $(- cells - 1)$ from	
	Refer to χ_3 .			1111	wrongly grouped table and ft.	
					Otherwise, no ft if wrong.	
					$P(X^2 > 14.667) = 0.00212.$	
	Upper 5% point is 7.	815.		A1	No ft from here if wrong.	
	Significant.	hla to gunno	a model with		ft only c's test statistic.	
	Suggests it is reasonable to suppose model with $p = \frac{1}{2}$ does not apply				it only c's test statistic.	[10]
	, 2 0000 not upp					[=0]
	1.4.4					
(ii)	$\bar{x} = \frac{144}{80} = 1.8$			R1	Cao	
	. 1.8			DI	C.a.0.	
	$\therefore p = \frac{1}{3} = 0.6$			B1	Use of $E(X) = np$.	
					ft c's mean, provided $0 < \hat{p} < 1$.	[2]
(iii)	\mathbf{D} - for $t = tt^2$			M1	Allow df 1 less than in part (i) No	
(111)	Keter to χ_2 .			1011	ft if wrong.	
	Upper 5% point is 5.991.			A1	No ft if wrong.	
	Suggests it is reasonable to suppose model with			A1	ft provided previous A mark	
	estimated p does apply.				awarded.	[3]
(iv)	For example:			F2	Reward any two sensible points for	[2]
(1)	Estimating <i>p</i> leads to	an improved	fit		E1 each.	
	at the expense of	the loss of 1 c	legree of			
	freedom.	_				
	The model in (i) fails	s due to a larg	je			
	underestimate for $X =$	= 3.			Total	[17]
					I Otal	[1/]

4768

2 (a)	$f(x) = \frac{1}{\pi^2} (8x - x^2), \ 2 \le x \le 8$			
(i)	$F(x) = \int_{2}^{x} \frac{1}{72} (8t - t^{2}) dt$ = $\frac{1}{72} \left[4t^{2} - \frac{t^{3}}{3} \right]_{2}^{x}$ = $\frac{1}{72} \left(4x^{2} - \frac{x^{3}}{3} - 16 + \frac{8}{3} \right) = \frac{12x^{2} - x^{3} - 40}{216}$	M1 A1 A1	Correct integral with limits (which may be implied subsequently). Correctly integrated Limits used. Accept unsimplified form.	[3]
(ii)	$\begin{array}{c} 1 \\ 0.5 \\ \hline \\ 2 \\ \hline \\ 2 \\ \hline \\ 2 \\ \hline \\ 4 \\ \hline \\ 6 \\ \hline \\ 8 \\ 10 \\ \hline \end{array}$	G1 G1 G1	Correct shape; nothing below $y = 0$; non-negative gradient. Labels at (2, 0) and (8, 1). Curve (horizontal lines) shown for x < 2 and $x > 8$.	[3]
(iii)	$F(m) = \frac{1}{2} \qquad \therefore \frac{12m^2 - m^3 - 40}{216} = \frac{1}{2}$ $\therefore 12m^2 - m^3 - 40 = 108$ $\therefore m^3 - 12m^2 + 148 = 0$ Either $F(4.42) = 0.5003(977) \approx 0.5$ Or $4 42^3 - 12 \times 4 42^2 + 148 = -0.0859(12) \approx 0$	M1 A1	Use of definition of median. Allow use of c's $F(x)$. Convincingly rearranged. Beware: answer given.	
	$\therefore m \approx 4.42$		better seen.	[3]

PMT

2.0	$II \cdot m = 4.42$	II	4 42	·····	D1	Dath Assant hymotheses in mards	,
2 (D)	$H_0: m = 4.42$ $H_1: m \neq 4.42$				BI	Both. Accept hypotheses in words.	
	where <i>m</i> is the population median				BI	Adequate definition of <i>m</i> to include	
	Waiahta		D 1 C			population.	
	weights	- 4.42	Rank of				
			diff				
	3.16	-1.26	7				
	3.62	-0.80	6				
	3.80	-0.62	4				
	3.90	-0.52	3				
	4.02	-0.40	2		2.61		
	4.72	0.30	1		MI	for subtracting 4.42.	
	5.14	0.72	5				
	6.36	1.94	8		MI	for ranks.	
	6.50	2.08	9		AI	ft if ranks wrong.	
	6.58	2.16	10				
	6.68	2.26	11				
	6.78	2.36	12				
	$W_{-} = 2 + 3 + 4 + 6 + 7 = 22$ Refer to Wilcoxon single sample tables for				B1	$(W_1 = 1 + 5 + 8 + 9 + 10 + 11 + 12)$	
						= 56)	
				for	M1	No ft from here if wrong.	
	n = 12. Lower 2 ¹ / ₂ % point is 13 (or upper is 65 if 56 used). Result is not significant.						
					A1	i.e. a 2-tail test. No ft from here if	
						wrong.	
					A1	ft only c's test statistic.	
	Evidence suggests that a median of 4.42 is consistent with these data			A1	ft only c's test statistic.	[10]	
							[**]
	consistent wi	in these dut				Total	[19]
						Totur	[1/]

3 (i)	Must assume			
J (I)	 Normality of population 	B1		
	• of differences	B1		
	$H_a: \mu_a = 0$	B1	Both Accept alternatives e.g. $U_{\rm r}$	
	$H_0: \mu_D = 0$	DI	0 for H ₁ or $\mu_{\rm p} = \mu_{\rm e}$ etc provided	
	H ₁ : $\mu_D > 0$ Where μ_D is the (population) mean reduction/difference in cholesterol level. <u>MUST</u> be PAIRED COMPARISON <i>t</i> test. Differences (reductions) (before – after) are:	B1	10 for H ₁ , or $\mu_B - \mu_A$ etc provided adequately defined. Hypotheses in words only must include "population". Do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used. Allow "after – before" if consistent with alternatives above.	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\overline{x} = 0.7833$ $s_{n-1} = 0.9833(46)$ $(s_{n-1}^{2} = 0.966969)$	B1	Do not allow $s_n = 0.9415 (s_n^2 = 0.8864)$	
	Test statistic is $\frac{0.7833 - 0}{0.0022}$	M1	Allow c's \overline{x} and/or s_{n-1} .	
	$\frac{0.9833}{2}$		Allow alternative: $0 + (c's 2.718) \times$	
	N 12		$\frac{0.9833}{\sqrt{12}}$ (= 0.7715) for subsequent	
			comparison with \overline{x} .	
			(Or \overline{x} – (c's 2.718) × $\frac{0.9833}{\sqrt{12}}$	
	= 2.7595.	A1	(= 0.0118) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft	
	Refer to t_{11} .	M1	No ft from here if wrong. P(t > 2.7595) = 0.000286	
	Single-tailed 1% point is 2.718.	A1	No ft from here if wrong.	
	Significant.	A1	ft only c's test statistic.	
	Seems mean cholesterol level has fallen.	A1	ft only c's test statistic.	[11]
(ii)	CI is $\overline{x} \pm 2.201$	M1 B1	Overall structure, seen or implied. From t_{11} , seen or implied.	
	$\times \frac{s}{\sqrt{12}} = (-0.5380, 1.4046)$	A1	Fully correct pair of equations using the given interval, seen or implied.	
	$\overline{x} = \frac{1}{2}(1.4046 - 0.5380) = 0.4333$ $s = (1.4046 - 0.4333) \times \frac{\sqrt{12}}{2.201} = 1.5287$	B1 M1 A1	Substitute \overline{x} and rearrange to find <i>s</i> . c.a.o.	
	Using this interval the doctor might conclude that the mean cholesterol level did not seem to	E1	Accept any sensible comment or interpretation of <u>this</u> interval.	[7]
	nave been reduced.		Total	[18]

January 2010

			Total	[18]
	$= 52.1 \pm 1.2146 = (50.885(4), 53.314(6))$	A1	c.a.o. Must be expressed as an interval.	[5]
	$\times \frac{4.8}{\sqrt{60}}$	M1		
	1.96	B1		
	CI is given by $52.1 \pm$	M1		
	$s = \sqrt{\frac{10.1225.00}{59}} = 4.8$	B1	Both correct.	
	$\frac{60}{164223.96 - 60 \times 52.1^2}$			
(iv)	$\overline{x} = \frac{3126.0}{52.1} = 52.1$			
	$\left(2^{-5}\sqrt{821}^{-5.5+50}\right)^{-1}$ 0.0505 - 0.5055	Al	c.a.o.	[5]
	$= P\left(Z > \frac{0 - (-10)}{2} = 0.3490\right) = 1 - 0.6365 = 0.3635$	111		
	Want $\mathbf{P}(W > W) = \mathbf{P}(W = W > 0)$	A1 M1	Accept sd (= 28.65).	
	605 + 216 = 821)	M1	Variance.	
	$\sigma^{-} = 11^{-} + 11^{-} + \dots + 11^{-} = 605)$ $D = W_{A} - W_{B} \sim N(-10,$	B1	Mean. Accept " $B - A$ ".	
(iii)	$W_A = A_1 + A_2 + \dots + A_5 + 25 \sim N(425,$ $\pi^2 - 11^2 + 11^2 + \dots + 11^2 = 605$			
	$\therefore v = \frac{15}{1.021 \times \sqrt{6}} = 5.9977 = 6 \text{ grams (nearest gram)}$	A1	Convincingly shown, beware A.G.	[5]
	$\therefore \frac{450 - 435}{v\sqrt{6}} = \Phi^{-1}(0.8463) = 1.021$	B1	Inverse Normal.	
	$P(\text{this} < 450) = P\left(Z < \frac{450 - 455}{v\sqrt{6}}\right) = 0.8463$	M1	Formulation of the problem.	
	$\sigma^2 = v^2 + v^2 + \dots + v^2 = 6v^2)$	B1	Expression for variance.	
(ii)	$W_B = B_1 + B_2 + \dots + B_6 + 15 \sim N(435,$	B1	Mean.	
	= 0.8182	A1	c.a.o.	[3]
(i)	$P(A < 90) = P\left(Z < \frac{90 - 80}{11} = 0.9091\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
			the first occurrence only.	
	$D = \Pi(10, 0 = V)$		to use the difference columns of the Normal distribution tables penalise	
4	$A \sim N(80, \sigma = 11)$ $B \sim N(70, \sigma = v)$		When a candidate's answers suggest that (s)he appears to have neglected	